Summation formulae for the product of the q-Kummer functions from $E_{q}(2)$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2001 J. Phys. A: Math. Gen. 341333
(http://iopscience.iop.org/0305-4470/34/7/308)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.101
The article was downloaded on 02/06/2010 at 09:50

Please note that terms and conditions apply.

Summation formulae for the product of the q-Kummer functions from $E_{q}(\mathbf{2})$

H Ahmedov ${ }^{1}$ and I H Duru ${ }^{1,2}$
${ }^{1}$ Feza Gürsey Institute, PO Box 6,81220 , Çengelköy, Istanbul, Turkey
${ }^{2}$ Trakya University, Mathematics Department, PO Box 126, Edirne, Turkey
E-mail: hagi@gursey.gov.tr and duru@gursey.gov.tr

Received 29 August 2000, in final form 21 November 2000

Abstract

Using the representation of $E_{q}(2)$ on the non-commutative space $z z^{*}-q z^{*} z=$ $\sigma ; q<1, \sigma>0$ summation formulae for the product of two, three and four q-Kummer functions are derived.

PACS numbers: 0230G, 0220

1. Introduction

Properties of manifolds can be investigated by means of their automorphism groups. Noncommutative spaces are studied similarly. For example, the quantum groups $E_{q}(2)$ and $S U_{q}(2)$ are the symmetry groups of the quantum plane and the quantum sphere, respectively [1-3]. The group representation theory gives the possibility of constructing the complete set of orthogonal functions on these deformed spaces. For example the Hahn-Exton q-Bessel and q-Legendre functions appears as the matrix elements of the unitary representations of $E_{q}(2)$ [4-7] and $S U_{q}(2)[8,9]$, which are the complete set of orthogonal functions on the quantum plane and the quantum sphere, respectively. Using group-theoretical methods the invariant distance and the Green functions have also been written on the quantum sphere [10] and the quantum plane [11].

In recent works we have studied the non-commutative space $\left[z, z^{*}\right]=\sigma$ (i.e. the space generated by the Heisenberg algebra) by means of its automorphism groups $E(2)$ and $S U(1,1)$ $[12,13]$. The basis in this non-commutative space where irreducible representations of $E(2)$ are realized were found to be the Kummer functions which involves the coordinates z, z^{*} not as their arguments but as indices. That study enables us to obtain generic summation formulae involving Kummer and Bessel functions. For the $S U(1,1)$ case the basis is given in terms of the hypergeometric functions having the non-commutative coordinates z and z^{*} as the parameters. Again we derived generic summation formulae involving hypergeometric and Jacobi functions. This analysis enables us to construct different complete sets of orthogonal functions on the non-commutative space. Both studies also provide new group-theoretical interpretations for the already known relations involving special functions.

Motivated by the outcomes of the above-mentioned studies, in this paper we consider the two-parametric deformation of the plane which is the $*$-algebra P_{q}^{σ} generated by z and z^{*} with

$$
\begin{equation*}
z z^{*}-q z^{*} z=\sigma \quad q<1 \quad \sigma>0 \tag{1}
\end{equation*}
$$

which possesses the symmetry of the group $E_{q}(2)$. In the $\sigma \rightarrow 0$ limit it becomes the usual quantum plane. In the $q \rightarrow 1$ limit it becomes the algebra of functions on the Heisenberg algebra. This study allows us to obtain many identities involving several Hahn-Exton q-Bessel and Moak q-Laguerre functions which are the special forms of the q-Kummer functions. Note that previously some formulae involving q-Laguerre functions were derived by making use of the representation theory of the q-oscillator algebra [14-19]. Some relations involving the basic Bessel and Laguerre functions were also considered in [21].

In section 2 we realize $E_{q}(2)$ as the automorphism group of the non-commutative space P_{q}^{σ}. In section 3 we construct the basis in P_{q}^{σ} where the irreducible representations of $E_{q}(2)$ are realized. Section 4 is devoted to the generic summation formulae for the product of two, three and four q-Kummer functions. In section 5 some simple examples are presented.

2. $E_{q}(2)$ as the symmetry group of P_{q}^{σ}

The quantum group $E_{q}(2)$ is the $*-H o p f$ algebra generated by B, B^{*} and A with relations

$$
\begin{equation*}
B B^{*}=q B^{*} B \quad A B=q B A \quad A B^{*}=q B^{*} A \quad A^{*}=A^{-1} \tag{2}
\end{equation*}
$$

coalgebra operations

$$
\begin{equation*}
\Delta(B)=B \otimes 1+A \otimes B \quad \Delta(A)=A \otimes A \tag{3}
\end{equation*}
$$

and antipode map

$$
\begin{equation*}
S(B)=-A^{-1} B \quad S\left(B^{*}\right)=-A B^{*} \quad S(A)=A^{-1} \tag{4}
\end{equation*}
$$

The map $\delta: P_{q}^{\sigma} \longrightarrow E_{q}(2) \otimes P_{q}^{\sigma}$ given by

$$
\begin{align*}
& \delta(z)=B \otimes 1+A \otimes z \tag{5}\\
& \delta\left(z^{*}\right)=B^{*} \otimes 1+A^{*} \otimes z^{*} \tag{6}
\end{align*}
$$

due to

$$
\begin{equation*}
\delta(z) \delta\left(z^{*}\right)-q \delta\left(z^{*}\right) \delta(z)=1 \otimes 1 \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
(\delta(z))^{*}=\delta\left(z^{*}\right) \tag{8}
\end{equation*}
$$

defines the corepresentation of the Hopf algebra $E_{q}(2)$ in the $*$-algebra P_{q}^{σ}. Formulae

$$
\begin{aligned}
& z|n, j\rangle=\sqrt{(n)_{q}}|n-1, j\rangle \\
& z^{*}|n, j\rangle=\sqrt{(n+1)_{q}}|n+1, j\rangle \\
& B|n, j\rangle=q^{j / 2}|n, j-1\rangle \\
& B^{*}|n, j\rangle=q^{(j+1) / 2}|n, j+1\rangle \\
& A|n, j\rangle=|n, j-2\rangle
\end{aligned}
$$

where

$$
(n)_{q}=\frac{1-q^{n}}{1-q}
$$

define the $*$-representation of the algebra $E_{q}(2) \otimes P_{q}^{\sigma}$ in some suitable domain of the Hilbert space X with the basis $\{|n, j\rangle\}, n=0,1,2, \ldots$ and $j \in \mathbb{Z}$. In the above formula we have put $\sigma=1$. When we need to calculate $\sigma \rightarrow 0$ limit we replace z, z^{*} by $z / \sqrt{\sigma}, z^{*} / \sqrt{\sigma}$.

Let us define in X a new basis such that

$$
\begin{align*}
& \delta(z)|n, j\rangle^{\prime}=\sqrt{(n)_{q}}|n-1, j\rangle^{\prime} \tag{10}\\
& \delta\left(z^{*}\right)|n, j\rangle^{\prime}=\sqrt{(n+1)_{q}}|n+1, j\rangle^{\prime} \tag{11}
\end{align*}
$$

Due to

$$
\begin{equation*}
z \mathrm{e}_{q}^{-x z^{*}}=-x \mathrm{e}_{q}^{x z^{*}}+\mathrm{e}_{q}^{-q x z^{*}} z \tag{12}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathrm{e}_{q}^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{(k)_{q}!} \tag{13}
\end{equation*}
$$

being the q-deformed exponential function, we conclude that

$$
\begin{equation*}
|0, j\rangle^{\prime}=\mathrm{e}_{q}^{-A^{*} B a^{*}} \sqrt{\mathrm{e}_{q}^{-B^{*} B}}|0, j\rangle \tag{14}
\end{equation*}
$$

is the ground state of the new basis

$$
\begin{equation*}
\delta(z)|0, j\rangle^{\prime}=0 \tag{15}
\end{equation*}
$$

Applying the creation operator $(\delta(z))^{*}$ on this state we can generate the desired basis in X :

$$
\begin{equation*}
|n, j\rangle^{\prime}=\frac{\left(\delta\left(z^{*}\right)\right)^{n}}{\sqrt{(n)_{q}!}}|0, j\rangle^{\prime} \tag{16}
\end{equation*}
$$

We also have

$$
\begin{equation*}
\delta(z)=U z U^{*} \tag{17}
\end{equation*}
$$

where U is the unitary operator in

$$
\begin{equation*}
|n, j\rangle^{\prime}=U|n, j\rangle \tag{18}
\end{equation*}
$$

Before closing this section we give the explicit formula for the matrix representation of U :

$$
\begin{equation*}
U_{(m i)(n j)}=\langle m, i \mid n, j\rangle^{\prime} . \tag{19}
\end{equation*}
$$

For $|n, j\rangle=|n\rangle|j\rangle$ we first define

$$
\begin{equation*}
\left.U_{m n}=\langle n| \delta\left(z^{*}\right)\right)^{n} \mathrm{e}_{q}^{-A^{*} B z^{*}}|0\rangle \sqrt{\frac{\mathrm{e}_{q}^{-B^{*} B}}{(n)_{q}!}} \tag{20}
\end{equation*}
$$

which is the function of B, B^{*}, A and A^{*}. Then

$$
\begin{equation*}
U_{(m i)(n j)}=\langle i| U_{m n}|j\rangle . \tag{21}
\end{equation*}
$$

After some algebra we obtain

$$
\begin{equation*}
U_{m n}=A^{-m} B^{* n-m} \Phi_{m n}(\eta) \quad \text { for } \quad n \geqslant m \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{m n}=q^{(m-n)(m-n-1) / 2} A^{-m}(-B)^{m-n} \Phi_{n m}(\eta) \quad \text { for } \quad m \geqslant n \tag{23}
\end{equation*}
$$

where $\eta^{2} \equiv B^{*} B$ and

$$
\begin{equation*}
\Phi_{m n}(\eta)=\sqrt{\frac{(n)_{q}!}{(m)_{q}!}} \frac{\sqrt{\mathrm{e}_{q}^{-\eta^{2}}}}{(n-m)_{q}!} \Phi^{q}\left(q^{-m}, q^{1+n-m} ; q^{n+1} \eta^{2}\right) \tag{24}
\end{equation*}
$$

Here

$$
\begin{equation*}
\Phi^{q}(a, b ; x)=\sum_{k=0}^{\infty} \frac{q^{k(k-1) / 2}(a ; q)_{k}}{(q ; q)_{k}(b ; q)_{k}}((1-q) x)^{k} \tag{25}
\end{equation*}
$$

which in the $q \rightarrow 1$ limit reduces to the Kummer function:

$$
\begin{equation*}
\lim _{q \rightarrow 1} \Phi^{q}\left(q^{c}, q^{d} ; x\right)=\Phi(c, d ; x) \tag{26}
\end{equation*}
$$

We call it the q-Kummer function. The functions $\Phi_{n m}$ can also be expressed in terms of Moak's q-Laguerre polynomials [22]

$$
\begin{equation*}
L_{n}^{q(\alpha)}(x)=\frac{\left(q^{1+\alpha} ; q\right)_{n}}{(q ; q)_{n}} \Phi^{q}\left(q^{-n}, q^{1+\alpha} ; q^{1+\alpha+n} x\right) \tag{27}
\end{equation*}
$$

as

$$
\begin{equation*}
\Phi_{m n}(\eta)=\sqrt{\mathrm{e}_{q}^{-\eta^{2}} \frac{(m)_{q}!}{(n)_{q}!}} L_{m}^{q(n-m)}\left(\eta^{2}\right) \quad \text { for } \quad n \geqslant m \tag{28}
\end{equation*}
$$

3. Irreducible representations of $E_{q}(2)$ in P_{q}^{σ}

The deformed enveloping algebra $U_{q}(e(2))$ is the $*$-Hopf algebra generated by P, P^{*} and K with relations

$$
\begin{align*}
& P^{*} P=q P P^{*} \quad K P=q P K \quad P^{*} K=q K P^{*} \quad K^{*}=K \tag{29}\\
& \Delta(P)=P \otimes 1+K \otimes P \quad \Delta(K)=K \otimes K \tag{30}\\
& S(P)=-K^{-1} P \quad S\left(P^{*}\right)=-K^{-1} P^{*} \quad S(K)=K^{-1} \tag{31}
\end{align*}
$$

The duality pairing between $E_{q}(2)$ and $U_{q}(e(2))$ is

$$
\begin{align*}
& \left\langle P, B^{* n} B^{m} A^{j}\right\rangle=\mathrm{i} \delta_{m 1} \delta_{n 0} \\
& \left\langle P^{*}, B^{* n} B^{m} A^{j}\right\rangle=\mathrm{i} \delta_{m 0} \delta_{n 1} \tag{32}\\
& \left\langle K, B^{* n} B^{m} A^{j}\right\rangle=q^{j} \delta_{m 0} \delta_{n 0} .
\end{align*}
$$

The formula

$$
\begin{equation*}
R(X) F=\sum_{j}\left\langle X, F_{j}\right\rangle F_{j}^{\prime} \quad F \in P_{q}^{\sigma} \tag{33}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta(F)=\sum_{j} F_{j} \otimes F_{j}^{\prime} \tag{34}
\end{equation*}
$$

defines the right representation of $U_{q}(e(2))$ in P_{q}^{σ}. We have

$$
\begin{align*}
& R(K) z^{* n} z^{m}=q^{m-n} z^{* n} z^{m} \\
& R(P) z^{* n} z^{m}=\mathrm{i} q^{-n}(m)_{q} z^{* n} z^{m-1} \tag{35}\\
& R\left(P^{*}\right) z^{* n} z^{m}=\mathrm{i} q^{-n+1}(n)_{q} z^{* n-1} z^{m}
\end{align*}
$$

The unitary irreducible representation of $U_{q}(e(2))$ is defined by the weight $\lambda \in \mathbb{R}$ and is given by $[4,6,7]$
$\pi(K) e_{j}=q^{j} e_{j} \quad \pi(P) e_{j}=\lambda q^{j / 2} e_{j-1} \quad \pi\left(P^{*}\right) e_{j}=\lambda q^{(j+1) / 2} e_{j+1}$
where e_{j} is some orthogonal basis. We look for the basis $D_{j}^{\lambda}\left(z, z^{*}\right)$ in P_{q}^{σ} on which the irreducible representation of $U_{q}(e(2))$ is realized; that is,

$$
\begin{align*}
& R(K) D_{j}^{\lambda}\left(z, z^{*}\right)=q^{j} D_{j}^{\lambda}\left(z, z^{*}\right) \tag{37}\\
& R(P) D_{j}^{\lambda}\left(z, z^{*}\right)=\lambda q^{j / 2} D_{j-1}^{\lambda}\left(z, z^{*}\right) \tag{38}\\
& R\left(P^{*}\right) D_{j}^{\lambda}\left(z, z^{*}\right)=\lambda q^{(j+1) / 2} D_{j+1}^{\lambda}\left(z, z^{*}\right) \tag{39}
\end{align*}
$$

Equation (37) implies

$$
D_{j}^{\lambda}\left(z, z^{*}\right)= \begin{cases}f_{j}^{\lambda}(\zeta) z^{j} & \text { for } \quad j \geqslant 0 \tag{40}\\ z^{*-j} f_{-j}^{\lambda}(\zeta) & \text { for } \quad j \leqslant 0\end{cases}
$$

where

$$
\begin{equation*}
\zeta \equiv 1-(1-q) z^{*} z \tag{41}
\end{equation*}
$$

Inserting the ansatz (40) into (38) and (39) we obtain

$$
\begin{equation*}
f_{j}^{\lambda}(\zeta)=\frac{q^{j^{2} / 4}(\mathrm{i} \lambda)^{j}}{(j)_{q}!} \Phi^{q}\left(\zeta^{-1}, q^{j+1} ; q^{j+1} \lambda^{2} \zeta\right) \tag{42}
\end{equation*}
$$

In the derivation of (42) we used

$$
\begin{equation*}
z^{* n} z^{n}=(-)^{n} q^{n(1-n) / 2}\left(\zeta^{-1} ; q\right)_{n} \zeta^{n} \tag{43}
\end{equation*}
$$

By means of the universal T-matrix $[6,20]$ we can exponentiate (37) and obtain

$$
\begin{equation*}
\delta\left(D_{j}^{\lambda}\right)=\sum_{i=-\infty}^{\infty} t_{j i}^{\lambda} D_{i}^{\lambda} \tag{44}
\end{equation*}
$$

where
$t_{i j}^{\lambda}=q^{\left(i^{2}-j^{2}\right) / 4} \frac{(\mathrm{i} \lambda B)^{i-j} A^{j}}{(i-j)_{q}!} \Phi^{q}\left(0, q^{1+i-j} ;(q-1) q^{1-j}(\lambda \eta)^{2}\right) \quad$ for $\quad i \geqslant j$
$t_{i j}^{\lambda}=q^{\left(i^{2}-j^{2}\right) / 4} \frac{A^{j}\left(\mathrm{i} \lambda B^{*}\right)^{j-i}}{(j-i)_{q}!} \Phi^{q}\left(0, q^{1+j-i} ;(q-1) q^{1-i}(\lambda \eta)^{2}\right) \quad$ for $\quad j \geqslant i$
are the matrix elements of the irreducible representations of $E_{q}(2)[6,7]$. We can express them in terms of the Hahn-Exton q-Bessel functions [23]

$$
\begin{equation*}
J_{k}^{q}(x)=\frac{x^{k}}{(k)_{q}!} \Phi^{q}\left(0 ; q^{1+k} \mid q ;(q-1) q x^{2}\right) \tag{47}
\end{equation*}
$$

as

$$
\begin{array}{ll}
t_{i j}^{\lambda}=\left(\sqrt{-1} q^{\frac{1}{4}}\right)^{i-j} V^{i-j} A^{j} J_{i-j}^{q}\left(q^{-j / 2} \lambda \eta\right) & \text { for } \quad i \geqslant j \\
t_{i j}^{\lambda}=\left(\sqrt{-1} q^{-\frac{1}{4}}\right)^{j-i} V^{i-j} A^{j} J_{j-i}^{q}\left(q^{-i / 2} \lambda \eta\right) \quad \text { for } \quad j \geqslant i \tag{49}
\end{array}
$$

where V is the unitary operator defined by $B=V \eta$.

In the $\sigma \rightarrow 0$ limit the non-commutative space P_{q}^{σ} becomes the quantum plane $E_{q}(2) / U(1)$ generated by B, B^{*} :

$$
\begin{equation*}
\lim _{\sigma \rightarrow 0} D_{j}^{\sqrt{\sigma} \lambda}\left(\frac{B}{\sqrt{\sigma}}, \frac{B^{*}}{\sqrt{\sigma}}\right)=t_{j 0}^{\lambda} . \tag{50}
\end{equation*}
$$

In the $q \rightarrow 1$ limit P_{q}^{σ} becomes the non-commutative space generated by the Heisenberg algebra [12]:

$$
\begin{equation*}
\lim _{q \rightarrow 1} D_{j}^{\lambda}\left(z, z^{*}\right)=\Phi\left(-z z^{*} ; 1+j ; \lambda^{2}\right) \frac{(\mathrm{i} \lambda z)^{j}}{j!} \tag{51}
\end{equation*}
$$

In the $\sigma \rightarrow 0$ and $q \rightarrow 1$ limit we arrive at the complex plane $E(2) / U(1)$:

$$
\begin{equation*}
\lim _{\sigma \rightarrow 0} \lim _{q \rightarrow 1} D_{j}^{\sqrt{\sigma} \lambda}\left(\frac{r \mathrm{e}^{\mathrm{i} \psi}}{\sqrt{\sigma}}, \frac{r \mathrm{e}^{-\mathrm{i} \psi}}{\sqrt{\sigma}}\right)=\mathrm{i}^{j} \mathrm{e}^{-\mathrm{i} j \psi} J_{j}(\lambda r) \tag{52}
\end{equation*}
$$

4. Summation formulae for the q-Kummer functions

Equations (17) and (44) imply

$$
\begin{equation*}
U D_{j}^{\lambda} U^{*}=\sum_{i=-\infty}^{\infty} t_{j i}^{\lambda} D_{i}^{\lambda} \tag{53}
\end{equation*}
$$

or

$$
\begin{align*}
& U D_{j}^{\lambda}=\sum_{i=-\infty}^{\infty} t_{j i}^{\lambda} D_{i}^{\lambda} U \tag{54}\\
& D_{j}^{\lambda}=\sum_{i=-\infty}^{\infty} t_{j i}^{\lambda} U^{*} D_{i}^{\lambda} U . \tag{55}
\end{align*}
$$

The above formulae define the summation of products of two, three and four q-Kummer functions. Sandwiching (53)-(55) between the states $\langle m|$ and $|n\rangle$ and using

$$
\begin{align*}
& \left(D_{j}^{\lambda}\right)_{m n}=\sqrt{\frac{(n)_{q}!}{(m)_{q}!}} f_{j}^{\lambda}\left(q^{m}\right) \delta_{j, n-m} \quad \text { for } \quad j \geqslant 0 \tag{56}\\
& \left(D_{-j}^{\lambda}\right)_{m n}=\left(D_{j}^{\lambda}\right)_{n m} \tag{57}
\end{align*}
$$

we obtain

$$
\begin{array}{ll}
\sum_{s=0}^{\infty}\left(D_{j}^{\lambda}\right)_{s s+j} U_{m s} U_{s+j n}^{*}=\left(D_{n-m}^{\lambda}\right)_{m n} t_{j n-m}^{\lambda} & \text { for } \quad j \geqslant 0 \\
\sum_{s=0}^{\infty}\left(D_{j}^{\lambda}\right)_{s-j s} U_{m s-j} U_{s n}^{*}=\left(D_{n-m}^{\lambda}\right)_{m n} t_{j n-m}^{\lambda} & \text { for } \quad j<0 \\
\sum_{s=0}^{\infty} t_{j s-m}^{\lambda}\left(D_{s-m}^{\lambda}\right)_{m s} U_{s n}=\left(D_{j}^{\lambda}\right)_{n-j n} U_{m n-j} & \text { for } n \geqslant j \\
\sum_{s=0}^{\infty} t_{j s-m}^{\lambda}\left(D_{s-m}^{\lambda}\right)_{m s} U_{s n}=0 & \text { for } n<j \tag{61}
\end{array}
$$

and

$$
\begin{equation*}
\sum_{s, l=0}^{\infty} t_{j l-s}^{\lambda}\left(D_{l-s}^{\lambda}\right)_{s l} U_{m s}^{*} U_{l n}=\left(D_{j}^{\lambda}\right)_{m n} \delta_{j n-m} \tag{62}
\end{equation*}
$$

In the above formulae $U \mathrm{~s}$ and $t \mathrm{~s}$ are given in terms of the q-Kummer functions of the operator $\eta=B^{*} B$ (see (22), (23) and (45)).

In the coming section we give some simple examples.

5. Examples

A. For $n=m=0, j \geqslant 0$, equation (58) implies

$$
\begin{equation*}
\sum_{s=0}^{\infty} \frac{q^{s(1-s) / 2} \eta^{2 s}}{(s)_{q}!} \Phi^{q}\left(q^{-s}, q^{1+j} ; q^{1+j+s} \lambda^{2}\right)=\frac{(\mathrm{i} \lambda \eta)^{-j}(j)_{q}!}{\sqrt{\mathrm{e}_{q}^{-\eta^{2}} \mathrm{e}_{q}^{-q^{j} \eta^{2}}}} J_{j}^{q}(\lambda \eta) \tag{63}
\end{equation*}
$$

which in the $q \rightarrow 1$ limit gives [24] (p 1038, equation (3) of 8.975)

$$
\begin{equation*}
\sum_{s=0}^{\infty} \frac{\eta^{2 s}}{s!} \Phi\left(-s, 1+j ; \lambda^{2}\right)=j!(\eta \lambda)^{-j} \mathrm{e}^{\eta^{2}} J_{j}(\lambda \eta) \tag{64}
\end{equation*}
$$

B. For $n=0$ and $k \equiv-j \geqslant m$, equation (60) implies

$$
\begin{equation*}
\sum_{s=0}^{\infty} q^{s(s+m-2 k) / 2} C_{s m} \eta^{s} J_{s+k-m}^{q}\left(q^{(s+k) / 2} \lambda \eta\right)=\frac{q^{k(k-m) / 2} \lambda^{k} \eta^{k-m}}{(m)_{q}!(k-m)_{q}!} \Phi^{q}\left(q^{-m}, q^{1+k-m} ; q^{1+k} \eta^{2}\right) \tag{65}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{s m}=\frac{(-)^{s} \lambda^{m-s}}{(s)_{q}!(m-s)_{q}!} \Phi_{q}\left(q^{-s}, q^{1+m-s} ; q^{1+m} \lambda^{2}\right) \quad \text { for } \quad m \geqslant s \tag{66}
\end{equation*}
$$

For $s \geqslant m$ one has to replace m, s with s, m on the right-hand side of the above expression. When $m=0$ we have

$$
\begin{equation*}
\sum_{s=0}^{\infty} q^{\frac{1}{2} s^{2}+s k} \frac{(\lambda \eta)^{s}}{(s)_{q}!} J_{s+k}^{q}\left(q^{(s+k) / 2} \lambda \eta\right)=q^{k^{2} / 2} \frac{(\lambda \eta)^{k}}{(k)_{q}!} \tag{67}
\end{equation*}
$$

which is the quantum analogue of a known formula [24, p 974, equation (1) of 8.515].
C. For $j=\lambda=0$, equation (62) implies the unitarity condition for the operator U :

$$
\begin{equation*}
\sum_{s=0}^{\infty}\left(U_{s m}\right)^{*} U_{s n}=\delta_{n m} \tag{68}
\end{equation*}
$$

where we have used

$$
\begin{equation*}
U_{m s}^{*}=\left(U_{s m}\right)^{*} \tag{69}
\end{equation*}
$$

For $n=m$ with $x=\eta^{2}$ we have

$$
\begin{gather*}
\sum_{s=0}^{n-1} \frac{q^{(n-s)(n-s+1) / 2}(n)_{q}!x^{n-s}}{(s)_{q}!}\left(L_{s}^{q(s-n)}(x)\right)^{2}+\sum_{s=n}^{\infty} \frac{q^{(n-s)(n-s+1) / 2}(s)_{q}!x^{s-n}}{(n)_{q}!}\left(L_{n}^{q(n-s)}(x)\right)^{2} \\
=e_{q^{-1}}^{x} . \tag{70}
\end{gather*}
$$

In deriving the above examples one frequently uses the identities

$$
\begin{equation*}
B^{k} B^{* k}=q^{k(k+1) / 2} \eta^{2 k} \quad B^{* k} B^{k}=q^{k(1-k) / 2} \eta^{2 k} \tag{71}
\end{equation*}
$$

References

[1] Podleś P 1987 Lett. Math. Phys. 14193
[2] Manin Yu I 1988 Quantum groups and noncommutative geometry Publ. CRM vol 1561 University of Monreal
[3] Woronowicz S L 1987 Commun. Math. Phys. 111613
[4] Woronowicz S L 1991 Commun. Math. Phys. 136399
Woronowicz S L 1992 Commun. Math. Phys. 144417
Woronowicz S L 1992 Commun. Math. Phys. 149637
Woronowicz S L 1991 Lett. Math. Phys. 23251
[5] Vaksman L L and Korogodski L I 1989 Dokl. Akad. Nauk SSSR 3041036
[6] Bonechi F, Ciccoli N, Giaretti R, Sorace E and Tarlini M 1996 Commun. Math. Phys. 175161
[7] Koelink H T 1994 Duke Math. J. 76483
[8] Koornwinder T H 1989 Nederl. Akad. Wetensch. Proc. A 7697 Koornwinder T H 1991 SIAM J. Math. Anal. 22295
[9] Vilenkin N Ya and Klimyk A U 1991 Representations of Lie Groups and Special Functions vol 3 (Dordrecht: Kluwer)
[10] Ahmedov H and Duru I H 1998 J. Phys. A: Math. Gen. 315741
[11] Ahmedov H and Duru I H 1999 J. Phys. A: Math. Gen. 326255
[12] Ahmedov H and Duru I H 2000 J. Phys. A: Math. Gen. 334277
[13] Ahmedov H and Duru I H 2001 J. Phys. A: Math. Gen. 34227 (Ahmedov H and Duru I H 2000 Preprint math. QA/0003078)
[14] Askey R and Suslov S K 1993 J. Phys. A: Math. Gen. 26 L693
[15] Askey R and Suslov S K 1993 Lett. Math. Phys. 29123
[16] Floreanini R and Vinet L 1993 Phys. Lett. A 180393
[17] Kalnins E G, Manocha H L and Miller W 1992 J. Math. Phys. 332365
[18] Kalnins E G and Miller W 1994 J. Math. Phys. 351951
[19] Kalnins E G, Miller W and Mukherjee S 1993 J. Math. Phys. 345333
[20] Fronsdal C and Galingo A 1993 Lett. Math. Phys. 2759
[21] Koelink H T 1996 J. Comput. Appl. Math. 68209
[22] Moak D S 1981 J. Math. Anal. Appl. 8120
[23] Koornwinder T H and Swarttouw R F 1992 Trans. Am. Math. Soc 333445
[24] Gradshtein I S and Ryzhik I M 1980 Tables of Integrals, Series and Products (New York: Academic)

