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Abstract
Using the representation of Eq(2) on the non-commutative space zz∗ −qz∗z =
σ ; q < 1, σ > 0 summation formulae for the product of two, three and four
q-Kummer functions are derived.

PACS numbers: 0230G, 0220

1. Introduction

Properties of manifolds can be investigated by means of their automorphism groups. Non-
commutative spaces are studied similarly. For example, the quantum groupsEq(2) and SUq(2)
are the symmetry groups of the quantum plane and the quantum sphere, respectively [1–3]. The
group representation theory gives the possibility of constructing the complete set of orthogonal
functions on these deformed spaces. For example the Hahn–Exton q-Bessel and q-Legendre
functions appears as the matrix elements of the unitary representations of Eq(2) [4–7] and
SUq(2) [8, 9], which are the complete set of orthogonal functions on the quantum plane and
the quantum sphere, respectively. Using group-theoretical methods the invariant distance and
the Green functions have also been written on the quantum sphere [10] and the quantum plane
[11].

In recent works we have studied the non-commutative space [z, z∗] = σ (i.e. the space
generated by the Heisenberg algebra) by means of its automorphism groupsE(2) and SU(1, 1)
[12, 13]. The basis in this non-commutative space where irreducible representations of E(2)
are realized were found to be the Kummer functions which involves the coordinates z, z∗

not as their arguments but as indices. That study enables us to obtain generic summation
formulae involving Kummer and Bessel functions. For the SU(1, 1) case the basis is given
in terms of the hypergeometric functions having the non-commutative coordinates z and z∗ as
the parameters. Again we derived generic summation formulae involving hypergeometric and
Jacobi functions. This analysis enables us to construct different complete sets of orthogonal
functions on the non-commutative space. Both studies also provide new group-theoretical
interpretations for the already known relations involving special functions.
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Motivated by the outcomes of the above-mentioned studies, in this paper we consider the
two-parametric deformation of the plane which is the ∗-algebra Pσ

q generated by z and z∗ with

zz∗ − qz∗z = σ q < 1 σ > 0 (1)

which possesses the symmetry of the group Eq(2). In the σ → 0 limit it becomes the usual
quantum plane. In the q → 1 limit it becomes the algebra of functions on the Heisenberg
algebra. This study allows us to obtain many identities involving several Hahn–Exton q-Bessel
and Moak q-Laguerre functions which are the special forms of the q-Kummer functions. Note
that previously some formulae involving q-Laguerre functions were derived by making use
of the representation theory of the q-oscillator algebra [14–19]. Some relations involving the
basic Bessel and Laguerre functions were also considered in [21].

In section 2 we realize Eq(2) as the automorphism group of the non-commutative space
Pσ
q . In section 3 we construct the basis in Pσ

q where the irreducible representations of Eq(2)
are realized. Section 4 is devoted to the generic summation formulae for the product of two,
three and four q-Kummer functions. In section 5 some simple examples are presented.

2. Eq(2) as the symmetry group of P σ
q

The quantum group Eq(2) is the ∗-Hopf algebra generated by B, B∗ and A with relations

BB∗ = qB∗B AB = qBA AB∗ = qB∗A A∗ = A−1 (2)

coalgebra operations

�(B) = B ⊗ 1 + A⊗ B �(A) = A⊗ A (3)

and antipode map

S(B) = −A−1B S(B∗) = −AB∗ S(A) = A−1. (4)

The map δ : Pσ
q −→ Eq(2)⊗ Pσ

q given by

δ(z) = B ⊗ 1 + A⊗ z (5)

δ(z∗) = B∗ ⊗ 1 + A∗ ⊗ z∗ (6)

due to

δ(z)δ(z∗)− qδ(z∗)δ(z) = 1 ⊗ 1 (7)

and

(δ(z))∗ = δ(z∗) (8)

defines the corepresentation of the Hopf algebra Eq(2) in the ∗-algebra Pσ
q . Formulae

z|n, j〉 = √
(n)q |n− 1, j〉

z∗|n, j〉 = √
(n + 1)q |n + 1, j〉

B|n, j〉 = qj/2|n, j − 1〉 (9)

B∗|n,j 〉 = q(j+1)/2|n, j + 1〉
A|n, j〉 = |n, j − 2〉

where

(n)q = 1 − qn

1 − q



Summation formulae for the product of the q-Kummer functions from Eq(2) 1335

define the ∗-representation of the algebra Eq(2)⊗ Pσ
q in some suitable domain of the Hilbert

space X with the basis {|n, j〉}, n = 0, 1, 2, . . . and j ∈ Z. In the above formula we have put
σ = 1. When we need to calculate σ → 0 limit we replace z, z∗ by z/

√
σ , z∗/

√
σ .

Let us define in X a new basis such that

δ(z)|n, j〉′ = √
(n)q |n− 1, j〉′ (10)

δ(z∗)|n, j〉′ = √
(n + 1)q |n + 1, j〉′. (11)

Due to

ze−xz∗
q = −xexz

∗
q + e−qxz∗

q z (12)

with

exq =
∞∑
k=0

xk

(k)q!
(13)

being the q-deformed exponential function, we conclude that

|0, j〉′ = e−A∗Ba∗
q

√
e−B∗B
q |0, j〉 (14)

is the ground state of the new basis

δ(z)|0, j〉′ = 0. (15)

Applying the creation operator (δ(z))∗ on this state we can generate the desired basis in X:

|n, j〉′ = (δ(z∗))n√
(n)q!

|0, j〉′. (16)

We also have

δ(z) = UzU ∗ (17)

where U is the unitary operator in

|n, j〉′ = U |n, j〉. (18)

Before closing this section we give the explicit formula for the matrix representation of
U :

U(mi)(nj) = 〈m, i|n, j〉′. (19)

For |n, j〉 = |n〉|j〉 we first define

Umn = 〈n|δ(z∗))ne−A∗Bz∗
q |0〉

√
e−B∗B
q

(n)q!
(20)

which is the function of B, B∗, A and A∗. Then

U(mi)(nj) = 〈i|Umn|j〉. (21)

After some algebra we obtain

Umn = A−mB∗n−m�mn(η) for n � m (22)

and

Umn = q(m−n)(m−n−1)/2A−m(−B)m−n�nm(η) for m � n (23)
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where η2 ≡ B∗B and

�mn(η) =
√
(n)q!

(m)q!

√
e−η2

q

(n−m)q!
�q(q−m, q1+n−m; qn+1η2). (24)

Here

�q(a, b; x) =
∞∑
k=0

qk(k−1)/2(a; q)k
(q; q)k(b; q)k ((1 − q)x)k (25)

which in the q → 1 limit reduces to the Kummer function:

lim
q→1

�q(qc, qd; x) = �(c, d; x). (26)

We call it the q-Kummer function. The functions�nm can also be expressed in terms of Moak’s
q-Laguerre polynomials [22]

Lq(α)
n (x) = (q1+α; q)n

(q; q)n �q(q−n, q1+α; q1+α+nx) (27)

as

�mn(η) =
√

e−η2

q

(m)q!

(n)q!
Lq(n−m)
m (η2) for n � m. (28)

3. Irreducible representations of Eq(2) in P σ
q

The deformed enveloping algebra Uq(e(2)) is the ∗-Hopf algebra generated by P , P ∗ and K
with relations

P ∗P = qPP ∗ KP = qPK P ∗K = qKP ∗ K∗ = K (29)

�(P ) = P ⊗ 1 + K ⊗ P �(K) = K ⊗K (30)

S(P ) = −K−1P S(P ∗) = −K−1P ∗ S(K) = K−1. (31)

The duality pairing between Eq(2) and Uq(e(2)) is

〈P,B∗nBmAj 〉 = iδm1δn0

〈P ∗, B∗nBmAj 〉 = iδm0δn1

〈K,B∗nBmAj 〉 = qj δm0δn0.

(32)

The formula

R(X)F =
∑
j

〈X,Fj 〉F ′
j F ∈ Pσ

q (33)

where

δ(F ) =
∑
j

Fj ⊗ F ′
j (34)

defines the right representation of Uq(e(2)) in Pσ
q . We have

R(K)z∗nzm = qm−nz∗nzm

R(P )z∗nzm = iq−n(m)qz∗nzm−1

R(P ∗)z∗nzm = iq−n+1(n)qz
∗n−1zm.

(35)
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The unitary irreducible representation of Uq(e(2)) is defined by the weight λ ∈ R and is given
by [4, 6, 7]

π(K)ej = qj ej π(P )ej = λqj/2ej−1 π(P ∗)ej = λq(j+1)/2ej+1 (36)

where ej is some orthogonal basis. We look for the basis Dλ
j (z, z

∗) in Pσ
q on which the

irreducible representation of Uq(e(2)) is realized; that is,

R(K)Dλ
j (z, z

∗) = qjDλ
j (z, z

∗) (37)

R(P )Dλ
j (z, z

∗) = λqj/2Dλ
j−1(z, z

∗) (38)

R(P ∗)Dλ
j (z, z

∗) = λq(j+1)/2Dλ
j+1(z, z

∗). (39)

Equation (37) implies

Dλ
j (z, z

∗) =
{
f λ
j (ζ )z

j for j � 0

z∗−j f λ
−j (ζ ) for j � 0

(40)

where

ζ ≡ 1 − (1 − q)z∗z. (41)

Inserting the ansatz (40) into (38) and (39) we obtain

f λ
j (ζ ) = qj

2/4(iλ)j

(j)q!
�q(ζ−1, qj+1; qj+1λ2ζ ). (42)

In the derivation of (42) we used

z∗nzn = (−)nqn(1−n)/2(ζ−1; q)nζ n. (43)

By means of the universal T -matrix [6, 20] we can exponentiate (37) and obtain

δ(Dλ
j ) =

∞∑
i=−∞

tλjiD
λ
i (44)

where

tλij = q(i
2−j 2)/4 (iλB)

i−jAj

(i − j)q!
�q(0, q1+i−j ; (q − 1)q1−j (λη)2) for i � j (45)

tλij = q(i
2−j 2)/4A

j(iλB∗)j−i

(j − i)q!
�q(0, q1+j−i; (q − 1)q1−i (λη)2) for j � i (46)

are the matrix elements of the irreducible representations ofEq(2) [6, 7]. We can express them
in terms of the Hahn–Exton q-Bessel functions [23]

J
q

k (x) = xk

(k)q!
�q(0; q1+k|q; (q − 1)qx2) (47)

as

tλij = (
√−1q

1
4 )i−jV i−jAjJ

q

i−j (q
−j/2λη) for i � j (48)

tλij = (
√−1q− 1

4 )j−iV i−jAjJ
q

j−i (q
−i/2λη) for j � i (49)

where V is the unitary operator defined by B = V η.
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In the σ → 0 limit the non-commutative space Pσ
q becomes the quantum plane

Eq(2)/U(1) generated by B, B∗:

lim
σ→0

D
√
σλ

j

(
B√
σ
,
B∗
√
σ

)
= tλj0. (50)

In the q → 1 limit Pσ
q becomes the non-commutative space generated by the Heisenberg

algebra [12]:

lim
q→1

Dλ
j (z, z

∗) = �(−zz∗; 1 + j ; λ2)
(iλz)j

j !
. (51)

In the σ → 0 and q → 1 limit we arrive at the complex plane E(2)/U(1):

lim
σ→0

lim
q→1

D
√
σλ

j

(
reiψ

√
σ
,
re−iψ

√
σ

)
= ije−ijψJj (λr). (52)

4. Summation formulae for the q-Kummer functions

Equations (17) and (44) imply

UDλ
j U

∗ =
∞∑

i=−∞
tλjiD

λ
i (53)

or

UDλ
j =

∞∑
i=−∞

tλjiD
λ
i U (54)

Dλ
j =

∞∑
i=−∞

tλjiU
∗Dλ

i U. (55)

The above formulae define the summation of products of two, three and four q-Kummer
functions. Sandwiching (53)–(55) between the states 〈m| and |n〉 and using

(Dλ
j )mn =

√
(n)q!

(m)q!
f λ
j (q

m)δj,n−m for j � 0 (56)

(Dλ
−j )mn = (Dλ

j )nm (57)

we obtain
∞∑
s=0

(Dλ
j )ss+jUmsU

∗
s+jn = (Dλ

n−m)mnt
λ
jn−m for j � 0 (58)

∞∑
s=0

(Dλ
j )s−jsUms−jU ∗

sn = (Dλ
n−m)mnt

λ
jn−m for j < 0 (59)

∞∑
s=0

tλjs−m(D
λ
s−m)msUsn = (Dλ

j )n−jnUmn−j for n � j (60)

∞∑
s=0

tλjs−m(D
λ
s−m)msUsn = 0 for n < j (61)
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and
∞∑

s,l=0

tλj l−s(D
λ
l−s)slU

∗
msUln = (Dλ

j )mnδjn−m. (62)

In the above formulae Us and ts are given in terms of the q-Kummer functions of the operator
η = B∗B (see (22), (23) and (45)).

In the coming section we give some simple examples.

5. Examples

A. For n = m = 0, j � 0, equation (58) implies
∞∑
s=0

qs(1−s)/2η2s

(s)q!
�q(q−s , q1+j ; q1+j+sλ2) = (iλη)−j (j)q!√

e−η2

q e−qj η2

q

J
q

j (λη) (63)

which in the q → 1 limit gives [24] (p 1038, equation (3) of 8.975)
∞∑
s=0

η2s

s!
�(−s, 1 + j ; λ2) = j !(ηλ)−jeη

2
Jj (λη). (64)

B. For n = 0 and k ≡ −j � m, equation (60) implies
∞∑
s=0

qs(s+m−2k)/2Csmη
sJ

q

s+k−m(q
(s+k)/2λη) = qk(k−m)/2λkηk−m

(m)q!(k −m)q!
�q(q−m, q1+k−m; q1+kη2) (65)

where

Csm = (−)sλm−s

(s)q!(m− s)q!
�q(q

−s , q1+m−s; q1+mλ2) for m � s. (66)

For s � m one has to replace m, s with s,m on the right-hand side of the above expression.
When m = 0 we have

∞∑
s=0

q
1
2 s

2+sk (λη)
s

(s)q!
J
q

s+k(q
(s+k)/2λη) = qk

2/2 (λη)
k

(k)q!
(67)

which is the quantum analogue of a known formula [24, p 974, equation (1) of 8.515].

C. For j = λ = 0, equation (62) implies the unitarity condition for the operator U :
∞∑
s=0

(Usm)
∗Usn = δnm (68)

where we have used

U ∗
ms = (Usm)

∗. (69)

For n = m with x = η2 we have
n−1∑
s=0

q(n−s)(n−s+1)/2(n)q!xn−s

(s)q!
(Lq(s−n)

s (x))2 +
∞∑
s=n

q(n−s)(n−s+1)/2(s)q!xs−n

(n)q!
(Lq(n−s)

n (x))2

= ex
q−1 . (70)

In deriving the above examples one frequently uses the identities

BkB∗k = qk(k+1)/2η2k B∗kBk = qk(1−k)/2η2k. (71)
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